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LIFT IN A SHEARED FLOW

P.B.S. Lissainan+
AeroVironment Inc.
Monrovia, California

Abstract

An explicit lifting line solution for the unheeled
case is given with lift distributions for typical

sail geometry. The optimum loading to minimize
induced drag for a given side force js derived,
analogous to the well known elliptical loading

of uniform flow, A powerful similarity solution

is developed, which js capable of handling the
general case of a heeled overlapping multiple

sail plan. It is shown that the sheared flow loadings
are significantly different from those given by

the conventional quasi-uniform flow approximation.
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Introduction
——2cuction

The sail of a yacht operates in a relative
wind cornposed of the vector sum of the hull and
the wind velocities, The latter varies strongly
in magnitude with height, but can be considered
dapproximately constant in direction. For a |2-m
sailboat, typical conditions may be taken as a
wind speed of 5.7 m/s .5 m from the surface
increasing to 8.5 m/s 25 m from the surface, at
masthead, Assurning a boat speed of 3.6 m/s at
307 to the true wind, this gives a relative speed
at a height of 1.5 m of 9.0 m/s at 18" relative
to hull direction of motion i%noring leeway and
at 25m of 11.7 m/s and 21.2°, Thus the relative
masthead speed s approximately 1.3 times the
speed near the foot of the saj (defined here as
4 shear of 0,30) with a twist of about 3.2°. Thjs
is typical of the sheared, twisted flow that the
sail experiences. The wind twist is relatively
small and, if accounted for in the kinematic boundary
condition as a saj| twist, may probably be neglected
in the flow dynainics. The shear Can not be ignored,
It represents 5 significant magnitude of onset
flow vorticity,
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Because of the vortjeal nature of the flow
the normal potential flow analysis of standard
wing theory is no longer valid. While the standard
singularities (sources, dipoles, vortex lines) exist
in sheared flows, the classical expressions for
their influence functions no longer apply since
the Biot Savart Law is not valid, nor is the global
form of the Bernoullj theorem. Thus existing
wing theory models are incorrect, and the magnitude
of the inaccuracy is unknown,

To date, most approaches to the sail in a
sheared flow have used the uniform flow or the
quasi-uniform flow approximation. In the uniform
flow model a representative mean flow js assumed
which is constant with height and the problem
is treated as a potential flow, In the quasi-uniform
flow mode] a general singularity system (typically
& vortex lattice) is constructed and assumed to
be immersed in a nonuniform but homenergetic
(irrotational) onset flow. Consequently, the classica]
potential flow influence functions of the singu-
larities may be used and a solution may be determined.

The uniform flow model has the advantage
of being theoretically an exact solution to the
assumed model -- however the model is evident]y
an approximation to the actual flow kinematics
and probably significantly in error in regions where
the onset flow is different from the assumed flow,
The quasi-uniform flow model s probably in some
sense a first order approximation for small shear
values but js unsatisfactory because the flow kine-
matical model is based on theoretical inconsis-
tencies so that again errors of unknown magnitude
are introduced,

While it is possible to construct a detailed
multiple element heeled lifting surface analysis
for either of the above models, it appears that
the precision of such models is unjustified because
of the intrinsic incorrectness of the fundamental
elemnents of the mode, Either the onset flow
or the singularity induced flow is incorrectly treated,
In either case, the solution is not accurate enough
to provide any usefy design tool, It has never
been proved that an elaborate lifting surface mode!
justifies the comn plexity and expense,

Theoretical Background

The theoretical background H;)this analysis (2)
is based on Von Karman and Tsien'"/ and Lighthili*<’,
Both papers develop the fundamental linearized
equations used as the starting point of the present
Paper. Von Karman and Tsien then approach the
specific problem of the wing in a sheared flow
while Lighthill em pPloys the more basic approach
of seeking to analytically express the fundamenta]
singularities in a sheared flow. Neither paper
gives an explicit solutjon method for the present
problem but both provide very valuable insights




into the fundamental difficulties -- essentially

that the analytical expressions for the perturbations
do not appear to converge at the downstream
infinity. Von Karman and Tsien (in Section 3 of

their paper) state that they believe that this does

not compromise the accuracy of the theory and

is simply a consequence of the linearization. Lighthill
discusses the issue at some length and proposes
different expansions near and far from the disturbing
body.

1f we consider the specific problem of the
present paper and attempt to qualitatively describe
the fluid mechanics, it appears that a steady-state
downstream surface of discontinuity, (the Trefftz
Plane) which is normally assumed in steady wing
theory when vortex sheet stability is ignored cannot
exist in the present case. This is because the
nonuniform vortical onset flow will cause continuous
distortion of the wing vortex wake as it proceeds
downstream, as well as perturbing the initial free-
stream vorticity distribution. We have no means
of determining this effect in the present analysis.
1t would be of great interest (and considerable
effort) to set up an unsteady finite difference
theoretical analysis in which the wake and the
free-stream vorticity is permitted to convect
as the flow developes. It would also be of considerable
interest to conduct a well—controlled experiment
of a wing in a sheared flow to determine the importance
and magnitude of this effectin a real flow, For
the present paper we will use the equations of
Von Karman and Tsien and develop an operational
solution from that basis.

Analysis

General Field Eguation

We now set up the field equations for a lifting
surface in a sheared flow. Because most of the
literature relates to the lifting aircraft wing we
will use standard notation for that case with the
equivalent sail parameter in parenthesis. Figure |
shows the geometry. The x axis is parallel 1o
the main flow (relative wind) U(y,z) with the y axis
normal to the plane of symmetry (water plane)
and in the direction of the right wing tip (mast
head) for a wing with no dihedral (heel), The z axis
is positive in the direction of the aerodynamic
force (to leeward). The perturbation velocities
are u,v,w, the pressure, p, and density P

Relative Wind

Fig. 1

Basic geometrv of wing in sheared flow.
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Now for a steady, incompressible inviscid
{low the linearized Euler equations become

1

qu+vuy+wuz=-§ Px (1
l

Uw :'ﬁp)‘ (2)
1

wa:_ﬁpz (3)

Here the suffix indicates partial differentiation.
The continuity equation becomes

u +v +w_=10 (4)

Xy z

The velocity perturbations may be eliminated
to give

2 2 e
(p /U )x+(pY!U )y+(psz ), =0 (5)
while equations (2) and (3) can be combined to
form a vorticity-like equation
Uv), - (Uw}y =0 (6)

Thus far we have followed the development
of von Karman and Tsien who then proceed to
propose a formal solution of Equation (5) for the
lifting line case but do not provide an explicit
operational expression for this solution.

For our analysis, to give explicit solutions,
we assume U = Uly) and then substitute Equation (2)
into (5) to give

V)r:x + VYY + sz = (UYY!U}V {?}

We now note that putting U = 0 converts
equation (7) to the LaPlace equation

Vo gy ® Vo 0 (8)

The mainstream velocity is now given by

u=ul+ 2K y/b),y > 0 (9)
where b/2 represents the semispan (mast height)

and K the dimensionless shear factor. For convenience
we will define the speed factor Vby V = U,’UO.

We note that conditions of symmetry give V = |

at y = 0 implying that the image freestream is

given by V = 1 - 2Ky/b, y < 0.

It is now possible to develop exact solutions
to the above equations, both for the lifting line
and lifting surface case, including the effects
of dihedral (heel).

Lifting Line Solutions

We will consider the zero dihedral case.
In the Trefftz plane, we obtain the two-dimensional
LaPlace equation

+ v =0 “O)

v
oyy ozz

where the suffix o indicates far downstream condition:

At the wing, as shown by von Karman and
Tsien we obtain the local lift, |, as
pentia gt (1)

where p = 1.0 is used in all following equations



where c is the local chord and C, the local lift
coefficient. The spanwise gradient of lift is given
by

!y = 2Uv (12)

The downwash in the Treffty plane is given
by -W, so that the induced angle at the wing becoines

-(wOKU)KZ.

Then the standard equation of lifting line
theory becoines

aly) = ly)/(muc) - (wo/U)/2 (13)

where @ is the airfoil effective angle of attack
at each station taking into account the angle of
incidence, the angle of twist and the angle of
effective camber (by using the zero lift line as
a reference).

We now generate a harmonic function v - j&
. —~ = - (o]
and note that putting V.= v_ will satisfy the fleld
equation and thus provide tfe sidewash solution
for the sheared flow,

Expression of Harmonic Functions

Equation (10) can be satistied by any harmonic
function satisfying the boundary conditions,

It is convenient to use the Glauert(n method
where a suitable choice for the complex potential
function F(8) = @y i Pwhere £+ E =6t/bt=y.iz
is F(8) = (U_b/2)T B_€ ™" with n odd.

It is now assumed that dF/dt = 7 - i% so
that on (or just above) the axis, z = o',0<y<b/2
the following expressions apply:

@ =(Ub/2) 3B sinnb= U b/2)s, (14)
¥ =(Ub/2)3 B, cosnb- (U b/2)s, (15)

where @8 - 0) = '},‘&’B =m/2) = 0.

- 1Y nB_ cos g

ve-U, sin B =U;S,

G, =y, (1)
o Nn Bn sin n

w = =Up sin e = ~U°Su (17)
:CDZ = —wy

where cos 6 = 2y/b

An additional required function is@, the

-~

integral of @, defined by § =3, 8M = 0) = 0.
This is given by y

2 ;
= -Uob ] sin2A
5ol ) o mz
5 sin-1P _ sin(n + 19
‘;Bn n-| n+l )]

= o= 5 (18)

Development of Aerodynamic Functions

We now note that putting v =7_ provides
the solution to equation (10) the ﬂelé’equation
defining the sidewash. It is now necessary to derive
the other aerodynamic functions

The downwash, -w, is obtained from equation
(6)

(UWJY = (Uv}z = U(Dyz

Uw = Uf@'y dy = UW - ny;v' dy

- UW 4 u, v _
v /0P (19)
The lift, |, is obtained from equation (]2)
Iy = ZU‘IJ'}r
= 2UQ- 2uyﬁ'p'dy
= 2UF- 2 Uy&; (20)

+=
=
L=

This yields C, = f‘U—? - —
" u

The Lifting Line Equation

We now substitute into equation (13) 1o give

_ 29 E d ~ 7 jmia @
Q-EUT: _'n'_U_zx - W/?U-Uwazu
L
a-AL g ASs S kS,
T VC T vie v 2 v2

where C is the normalized chord defined by ¢/¢
where € is the mean chord. The aspect ratio,
A, is defined by b/z.

The simplest form of the equation now is

S 5
A Tl 4 KIA 75 2
Varg z+ 3 +v[E &3] @

where Sl’ 52, S,y S represent series containing
B,, and varidus ?riggnometric functions of 9. The
normalized chord, C, and angle of attack,a, are
arbitrary functions of spanwise position, 8. The
normalized speed V is defined by V=1+K cosa.

The equation (21) can be solved by any standard
method to obtain the coefficients Bn.

The spanwise lift distribution is now given
by

- u?
= Lo b(VSI + KSS) (22)

The spanwise induced drag distribution, d,
is given by

2
U ‘b
4= 5 6+5 59 65, - % 5 (23




Comparison of Different Approximations

It is now possible to identify the lifting line
equations employed by the various models, since
the uniform flow and quasi-uniform flow models
are seen to be approximations of the sheared flow
model (equations 21, 22). The former are shown
below.

Tiniform Flow Model

il
C +

S
- A
VQ:?

m‘:-

i 15 BN (24)
o 1

where V is some mean speed ratio chosen to be
most representative

Quasi-Uniform Flow Model

S N
A 1 “ 2
= -—C + "-'2 & ] = Uo bV Sl (25)

It is of interest to note that the quasi-uniform
flow model can be solved by applying the uniform
flow lifting line equation (24) to a similar case
with an effective twist of Va.

VQ:

Optimal Loading Case

As shown by Karman and Tsien the optimal
loading occurs for spanwise constant downwash
angle, the same condition as with uniform flow.
Assume this angle is Y. Then equation (6) yields

2
-(u Y)y = (Uv),

-2U U= Uv_ = U'\? :U"w'
Y F4

z b
AW-.I'L}I: -4 KYU0+ UO
b
g -LJ0 [1 + 4 Ky!b] ,¥y>o0 (26)

Thus the sidewash function, ¥, must be the harmonic
conjugate of the above ramp-type function. Ancther
interpretation of ¥ is that, in wing theory, it is

the shed vorticity associated with the symmetrical
double ramp-type downwash. This gives rise to

a characteristic saddleback type of spanwise load
distribution which is derived below.

Writing the downwash W in terms of the
circular coordinate A we obtain

W = -yuo(z + 2 k cosP)

It can be shown that the harmonic conjugate ¥
is given by

7= yu, [com s 2Kico Lo/ + 2 corm)]

where
L*=In [{l - sin@)/(1 + sinﬁ)] (27)

Tne other functions P and® analogous to equations
(14, 18) are given by
YU_b

5: —o. sing -

2K (Cfﬁ’ L=
2 m 2

- Sinﬁ)] (28)

U_b ' 3
~ o 1 sin 28 2K | cos
B3 8- 208 ) I
, . sin28 1 sin 28
L B, g6 . 3602 0] @9

The spanwise lift distribution is now obtained
by substituting into equation (20) providing

2
2 2K jcosTBiy o
l,a"(}’l,o b) = V|sind - (-—2 L* - sm‘J)]

. 3
1 sin 29 2K §cos™® .

B, g . 3 0- U2 ] (30)
The optimal spanwise loading is shown in

Figure 2, where the loading has been normalized

by the mean load. The local loading can be integrated

to provide the total lift, L, defined as the load

on the lifting surface on one side of the plane

of symmetry.

2,2 1 - 2 el
L;(}'Uob)=§(ﬂﬂi+§K+ﬁK) (31)

It is of interest to show the local lift coefficients
required to achieve optimal loading. Using a representativ
triangular sail plan form, we show the normalized
local lift coefficient for optimal loading in Figure 3.

Normalized Lift, ib/2L

Normalized Semi-Span

Fig. 2 Optimal Loading for Different Shears.
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Fig 3. Optimal Local Lift Coefficient on Triangular Sail.

The induced drag is given by D. = yL/2.
We calculate the induced drag efficiency e in
the same way as for a monoplane wing. Thus

e= L1 D, qb?)

where g is some representative dynamic pressure.
If, as for C, we take the representative case as
at half the semispan (half mast height), y = b/4
we obtain

LR S kA k22 (32)

e :{1 +

This indicates that the span efficiency for
an optimally loaded wing in a sheared flow when
based on average flow speed is higher by approximately
the shear factor from that for the uniform flow
case. This is illustrated in the Table 1.

TABLE 1. Optimal span efficiency for sheared flows.

Shear Factor Span Efficiency
K
0 1.0
0.1 1.068
9.2 1.134
0.3 1.196
0.4 1.256

Sheared Flow Similarity Law

We now show that any given sheared flow
can be converted to a similar potential flow in
3 stretched coordinate system and solved by standard
methods. The similar solution may then be converted
to the corresponding sheared flow.

The similarity approach appears to have
considerable versatility. In order to illustrate
the inethod we describe first how a sheared flow
iolution can be derived from a given potential
flow solution, Consider a lifting surface of general

plan form and zero thickness in a uniforn flow
and assume that the perturbation potential@(x,y,z)
has been determined with velocity cormponents
T,V,W, satisfying the usual kinematic boundary
conditions on the wing and the dynamic vortex

sheet boundary condition on the wake. Evide tly

the sidewash V(x,y,z) satisfies the LaPlacianV 7 = o.
Now assume this saine sidewash component occurs
for a different wing in a sheared flow, U = U(K,y)
where it satisfies the field equation. We will define
the components of the sheared flow to be U,V , W

and note that by the similarity ¥(x,y,z) = v(x,y,z).
Thus v 1s the sidewash function defined in all space
for a certain wing in a sheared flow and we can

now determine other flow field components of

this new wing. In principle, this can be accom plished
once v(x,y,z) is known by satisfying the pseudo-
vorticity equation (6) (Uw). - (Uv)_ = 0 and the
continuity equation (8), u " v +w_ =0, It s

noted that this is a simple proéess St quadrature

in which the pseudo-vorticity equation provides

a pointwise algebraic (not differential) equation

for the velocity derivative w and hence w, while
the continuity equation then provides a similar
equation for the velocity derivative u . [t is noted
that the sheared flow wing has the safe planform
but a different twist and loading where the perturbation
w(x,y,z) defines the angle of attack and camber

and ulx,y,z) and v(x,y,z) define the loading.

We now show for a given wing in a sheared
flow how to construct the similar geometry of
the potential flow wing and then from the potential
solution how to derive the loading in the sheared
flow case.

We use normal symbols to represent the
sheared flow quantities and symbols with a tilda
overbar for the similar quantities. In the similar .
case, typical boundary conditions will be W(x,y)= U_3(x,y)

defining the downwash W and slope 5 of the lifting
system in a uniform flow U_ with the usual vortex
sheet conditions in the wak®. Assume that the
solution for these boundary conditions is known
then the potential @(x,y,z) is also known as well
as the streamwise perturbation flow, the spanwise
flow and the downwash, T,7,%.

Now there exists a similar sheared solution
in a nonuniform flow U = U(y) having the same
spanwise flow so that V(x,y,z) = v(x,y,z). We now
develop the other flow quantities in the sheared
flow. Equation (6) now yields

(Uw), = (Uv),

= U'.*z = Uvz = Uwy.
This yields

u = UW. .

( W)y U“’y

which provides

W

Ui

- (U),,’U} W dy

W w 4[{Uy;’U} w dy.




The slope relationship is given by

y
~_ s dy
82 ¥s+l, /00 -!; (33)
—y-v
Vs=5-U /UoV j s dy
Y [+ ]

The chordwise scaling remains the same,
thus in the potential flow problem all vertical,
z, distances must be scaled as indicated by equation
(33).

To determine the pressure differential on
a lifting element, we note that for a general dihedral
(heeled) surface of local dihedral angle §(s) as
shown in Figure 4, there is a discontinuity in both
v, w and V_, the tangential velocity, across the
surface but (for zero thickness surface) none in
V_, the normal velocity. The spanwise variation
in & may be taken to represent a 'bendy' mast
although including this refinement is probably
not consistent with other approximations. The
discontinuities are expressed as follows

v = by cosb+ Aw sinb

= -Av sind + Aw cosd
where Av, Aw represent the difference between
the upper and lower surface values of v, w. We

note that the spanwise gradient in pressure difference
&p is given by

5.3; (8p) = uaix av,
- & (p) = 2UgL (&v) [cosd
- 53? (ap) = 2 Uaix (v) /cosd
'a-as' (8p) = zuayx!cosb

_ 29 2
= 2U 5 @ x/cos” 0

We integrate this noting that Ap at the tip (st}
inust be zero and obtain

— s ~
- Apl2 = U(Px;’coszé- f Uywx ds/cos §
L
p = V&F - U JU, f AP cosd ds  (34)

5t

Plane of Symmetry

Vn

ds

Fig. 4 End view of non-planar dihedral lifting surface.

The sirnilarity procedure is thus as follows: Construct
a similar lifting surface geometry of the same
planform and heel where all z airfoil distances
(parallel to the reflection plane) such as camber,
twist and angle of attack have been increased

by the integral relationship of equation (33). Then
solve the potential problem for a uniforin onset

flow of U _, to arrive at the similar potential solution.
Finally, modify all the potential pressures AF by

the integral relationship expressed by equation

(34) to obtain the actual pressures.

The similarity approach can be used to develop
a lifting line model similar to that given previously.

In principle this should be accomplished
as follows: the actual angle of attack of the wing
should be modified according to equation (33)
providing a similar potential flow wing of different
twist. This is then solved by uniform flow lifting
line theory as expressed by equation (24). The
resulting load distribution is then modified according
to equation (34).

For the case of a constant chord wing of
zero dihedral manipulation of the equations recovers
the sheared flow solution given by equation (21).
For varying chord we have not been able to recover
equation (21). This is evidently due to subtleties
in the boundary condition of equation (34) where
the spanwise integration must be adjusted to give
zero load at the trailing edge, which in general
is not at the wing tip. It is believed that a more
careful attention to the boundary condition and
order of spanwise and chordwise integration of
the pressure difference Ap will resolve this. It
will be most convenient to investigate this directly
using a numerical lifting surface solution. Work
is in progress on this issue.

Comparison of Sheared Model With
Previous Models

It is of interest to compare the sheared lifting
line model developed here with the two conventional
models. This will give an indication of the accuracy
of the latter models and hence a reasonable engineering
criterion of how much geometrical structure is
worth including in the approximate models and
also, importantly, what the magnitude and source
of the error of the popular quasi-uniform flow
model is.

For this purpose it is convenient to use the
simplest representative mode! and geometry.
Thus we will choose the zero dihedral (unheeled)
lifting line model and the geometry of a triangular
planform of aspect ratio 7.0. This geometry can
be seen in Figure 5, where it is overlaid on a typical
modern [2-m sail plan.
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. Equivalent
- Triangular Surface

Fig. 5 Typical 12-M sail plan compared with triangular
surface.

The lift boundary conditions at the tip (masthead)
and root (sail foot) require careful discussion.
Most real sail heads are pointed and thus, if untwisted,
would imply infinitely large local lift coefficients
according to lifting line theory. Generally, the
membrane compliance near the head is such that
in any real sail the lifting surface is highly twisted
to reduce effective angle of attack thus it is washed
out (slackened) so that the tip loading is reduced.
However, the pointed tip is a geometrical reality
of most sails and must be part of any mode].

At the foot an Interesting situation occurs
regarding the aerodynamic continuation of the
sails to the waterplane, Sea test photography
indicates that when close-hauled the foot of the
fore sail of many types will usually overlap and
closely match the hull, so that jt appears to be
an adequate assumption to assume that the fore
sail is continued aerodynamically through the
canoe body to the waterplane. The main sail experiences
a different situation. On sorne racing classes
great effort is made to droop the boom so that
the clew is virtually at deck height and the main
sail foot may be approximately sealed. On other
classes, while the fore sail may be sealed, there
is a very distinct gap between the foot of the
nain and the deck. This case should presumably
be treated as a chord discontinuity, This can readily
be done using the discore&j'nuous functions lifting
line shown by Lissaman' ", This is likely to have
2 significant effect on induced drag but will not
be dealt with here.
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For the inodel under discussion here, we
will assuine that both the fore and inain sail are
effectively aerodynamically sealed, since our
object is to study discrepancies between models
using the most realistic simple geometry,

A comparison of the three cases is shown
in Figure 6 where the unheeled, untwisted, A = 7.9,
K = 0.3 case has been shown. The differences
in spanwise loading are seen to be quite significant
with the sheared flow loading falling approximately
between the quasi-uniform and uniform case.
The latter overpredicts at the foot and underpredicts
at mast head as might be expected. The quasi-
uniform model underpredicts at alj stations, being
about 10% low at the foot and 5% low overall.
The sheared flow lift slope based on dynamic pressure
at mid mast height is 4.58 which may be compared
to that of an elliptical wing of the same aspect
ratio in a uniform flow which is 4.89. The differences
in induced drag may also be determined, but are
not reported here since these calculations are
not complete,

I.G T s T
Planform: Triangular
Aspect Ratio: 7.00
Angle of Attack: | RAD
0.8 - Shear Factor: 0,3 1
Uniform

i Sheared
S 06 F .
-
LY
s
o
E 0.4 | 9
[=]
- Quasi Uniform

0.2 t+ -

0'0 Il 4 3

Normalized Semi-Span

Fig. 6 Spanwise loading predicted by different models,

Extension to General Case

It is noted that the most appropriate general
case should include twisted multiple lifting surfaces
with overlap and pointed tips, dihedral (heel) and
some model for reflection and lift continuation
through the canoe body to the image as well as
a model for chord discontinuity associated with
the gap between the main boom and fore sail foot
and the deck.

The sheared lifting line solution expressed
in equations (21, 22) very efficiently provides
results yielding an important insight to many of
the above features, particularly the effect of
planform, twist and gaps at the foot of the sail,
The effect on induced drag of the twist and gap
is of particular interest, Calculations for these
cases are in progress, It is noted, however, that
the sheared lifting line solution cannot deal explicitly
with the effect of heel or of the m ultiple overlapping
lifting surfaces,
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The sheared similarity solution expressed Recommendations
in equations (33, 34) is capable, in principle, of
dealing with all the geometrical effects described it is recommended that further work in investigati
in the first paragraph. Evidently, it requires a the solution techniques developed here be done,
potential flow multiple lifting surface prograrm particularly in resolving apparent discrepancies
to provide the similarity solution to the stretched between the present lifting line method and the
geometry. These programs are available, and present lifting surface similarity approach.
currently work is in progress to develop numerical
results. The present solution method, once validated,
should be exercised to determine the effects of
Conclusions discontinuities at sail foot and of the pointed sail
head. The method can then be implemented to
* A method has been developed to solve the develop desirable loading distributions for design
problem of the lifting wing in a linearly sheared of optimal real sails.
flow and to determine the optimum loading to
minimize induced drag. This solution is intrinsically It is further recommended that an unsteady
more accurate than current quasi-uniform flow sheared flow analysis be developed to determine
methods since it properly includes the vortical theoretically the effect of vorticity convection
nature of the onset flow. A relatively simple which has been ignored here. In addition to the
solution has been given for the unheeled lifting theoretical analysis, it will be very important
line. It is noted that solutions for geometry representative to conduct well-controlled tests of surfaces of
of a 12-m sail plan are significantly different simple geometry to experimentally determine
from those obtained using a uniform flow or a the practical magnitude of the nonlinear inviscid
quasi-uniform flow approximation. convection effects.
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